RETRACTED ARTICLE: Modeling of nanomaterial transportation over a sheet with involving MHD effect

نویسندگان

چکیده

Current modeling is presented to simulate the impression of magnetic forces and radiation cooling sheet. The testing fluid mixture copper oxide H2O due low fraction, homogeneous model was imposed. Terms were involved in energy momentum equations. After converting partial equation final forms, RK4 implemented find solution. Outputs illustrated view profiles. Impose Lorentz force can decline f increase θ. Such prevent nanomaterial migrate temperature boundary layer augments. Value declines about 6.4% with augment M. Impact λ on profiles augments as η increases. θ reduces 78.79% but 131.8% when = 2. Rise result increasing Rd become more obvious influence n opposite that Rd. Cf rise 199.2% M 0.1 it 53.97% 12. Thinner appears which provide greater Nu. At 12, Nu 49.37% λ. Inclusion makes reduce 27.25% 0.1. 64.75% owing reduction gradient. As augments, 206.37% absence field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

Dirichlet series and approximate analytical solutions of MHD flow over a linearly stretching ‎sheet

The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...

متن کامل

Numerical Solution of MHD Flow over a Nonlinear Porous Stretching Sheet

In this paper, the MagnetoHydroDynamic (MHD) boundary layer flow over a nonlinear porous stretching sheet is investigated by employing the Homotopy Perturbation Transform Method (HPTM) and the Pade´ approximation. The numerical solution of the governing non-linear problem is developed. Comparison of the present solution is made with the existing solution and excellent agreement is noted. Gr...

متن کامل

Numerical Simulation of MHD Boundary ‎Layer Stagnation Flow of Nanofluid over a ‎Stretching Sheet with Slip and Convective ‎Boundary Conditions

   An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...

متن کامل

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Nanoscience

سال: 2022

ISSN: ['2190-5517', '2190-5509']

DOI: https://doi.org/10.1007/s13204-021-02168-w